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Huffstutler and Stein and recently Bacopou1os and Kartsatos have dealt with
the problem of best approximation by polynomials of the solutions of nonlinear
differential equations. The purpose of the present paper is to generalize their
results and to show that they can be established under a weaker set of conditions.

We consider the best approximation by polynomials of the solutions on
[0, 1] of the Volterra integral equation

L(x)
./

xU) T I fU, 01', xes»~ dol'
• 0

h(t) (I)

as it is stated in [1] and [2]. The functions.!; h are defined and continuous on
[0, I] x [0, 1] IR, [0, 1], respectively. Suppose that there exists a unique
solution xU) of (I) defined on [0, I]. On C[O, I] we consider the norm

'p l. =~ sup i (p(t)!,
tE[O tJ

'I' E C[O, I].

Let lIn be the set of all polynomials Pn of degree less than or equal to 11 which
satisfy the condition Pn(O) = h(O), and put IL n = infPEll L(x) -- L(P)I! ,
11 c= 1,2, .... We examine if there exist polynomials P n Ell: such that

!L" - L(x) -- L(Pn}, and 11m P n
n·'c"f.)

x, uniformly on [0, I].

The results obtained in this paper contain as special cases those of [11 and
[2]. It is also to be noted that some of the conditions in [2] are not necessary.

I. PRELlMl"-'ARIES

Let I ~ IR be an interval with left endpoint zero. If x is a real continuous
function defined on J, then the operator Q : I x ~ C[ J, 0] is defined by

(Qtx)(e) x(t(l '·e», vE[--J,O], tEl.
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Let g: I X C[-1,0] ---+ IR andf: I x C[-1,0] ---+ IR be continuous functions.
A hereditary differential equation is a relation of the form

where

D(t) ep = ep(O) - get, ep), tEl, ep E C[ -1, 0].

Suppose U ~ I x C[ -1,0] is open and

s(t, ep, f, JL, s) "'c {f E C[-1,0] : (t, f) E U, II f - ep I' ~ JL,

f(B) = ep(B), BE [-I ,-s]},

(t, ep) E U. We say that a continuous function g : U ---+ IR is nonatomic at zero
if for every (t, ep) E U there exist So = so(t, ep) > 0, JLo = JLo(t, ep) continuous
and p(t, ep, JL, s) nondecreasing in JL, s and continuous such that

p(t, ep, JL, s) < 1 and Ig(t, f) - g(t, ep)1 ~ p(t, ep, JL, s)11 f -- ep

for every (t, f) E U, {f E S(t, ep, JL, s), S (= [0, So]' JL E [0, JLo]'

2. MAIN RESULTS

THEOREM 1. We consider a solution x(l) of the Eq. (I) on [0, 1]. If the
function

g(t, (1') t r f(t, t( 1 + B), ep(B)) dB,
-1

tE[O, I], ff·EC[-I,O]

is nonatomic at zero, then there exist an integer no 0 and P n E IIn such that

L(x) - L(Pn)11 = inf II L(x) - L(P},
PEITn

and limn~'l) Pn = x, uniformly on [0, 1].

The proof of this Theorem requires the following lemmas.

LEMMA 1. We consider the integral equations

( V n) x(t) = (In(t, s, xes)) ds + hn(t),
• 0

17 = 1,2,... ,

where In: [0, 1] X [0, 1] X IR ---+ IR, hn : [0, 1] ---+ IR are continuous functions
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such that limn~oofn fo , limn~oo hn ~ ... ho , uniformly on [0, 1] /, [0, 1] JR,
[0, 1], respectively. If

.. 0

gnU, cp) t I j~(t, t(1 + B), ep(B» dtJ hnlt),
• --I

t E [0, I), (p E C[-I, 0]. n 0, I, ...

and go is nonatomic at zero, then there exist an integer no °and solutions
X n of (V71) on [0, 1], n no such that limn~X) X n X o , uniformly on [0, 1].

Proof From what it is stated in [4, p. 67], the nonatomic property at
zero of go implies uniqueness of the solutions of (Vo) and the hereditary
equations

(Hn )

x(o) hn(O),

are equivalent to the integral equations

n 0, 1,._.

r
t

x(t)= jT/{t, .I, x(s» ds
'0

hnCt), JI = 0, L....

Thus, the existence of solutions X n of (V71) with lim X n =~ xo , uniformly on
[0, 1] follows from the existence of solutions X n of (Hn ) with Iimn~x X n X o '

uniformly on [0, I].
On the other hand, by Theorem 6.2 in [4], there exists a sequence X n of

solutions of (Hn) which converges uniformly on [0, 1] if

(i) Iimn~oo gn = go, uniformly on closed and bounded subsets of
[0, I] X C[-I,O];

(ii) gn, n = 0, I, ... are compact;

(iii) go is nonatomic at zero; and

(iv) go is uniformly continuous on closed and bounded subsets of
[0, 1] X C[-I, 0].

It is clear that all these conditions are satisfied and this completes the proof
of the lemma.

LEMMA 2. Let x be a solution of the Eq. (1) on [0,1]. If the function

.0

get, ep) t L
1
j(t, t(l + fJ), ep(fJ» dB, t E [0, 1], ep E C[-I, 0]
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is nonatomic at zero and there exist Qn E Iln such that

155

where

II L(x) - L(Qn)[j ~ !-tn + En, n = 1,2,... ,

En ? 0, lim En = 0,
n-'''~

then Qn converges uniformly to the solution x on [0, I].

Proof We prove first that limn~» L(Qn) = L(x), uniformly on [0, I]. In
fact, according to Weierstrass theorem there exist polynomials S" E Iln •

n I, 2, ... such that

lim Sn = X,
n-'X)

On the other hand we have

uniformly on [0, 1]. (2)

L(x) - L(Qn)1

!-tn +- En ~ L(x) - L(Sn)11 + En

= II X(t) -+- C{(t, .1', xes)) dol' - Sit) - lotf(t, .1', STI(S)) dol' + E'n
,I '0 ,()

r
t t

II X - ST/ Ii + {(t, .1', xes)) dol' - r f(t, .1', Sn(s)) dol' + En'
,() '()

Thus, by (2) and (3), we obtain

Jim II L(x) - L(Qn)1 = 0.
flOX·

We show next that limll~» Qn = x, uniformly on [0, I]. If we put

(3)

(4)

w.,,(t)'c x(t) - Qn(t) and kit) = L(x(t)) - L(Qn(t)), t E [0, I], n == 1,2, ... ;

then

k,,(t) = L(x(t)) - L(QnCt») = L(x(t) - L(x(t) - H'n(t))

= x(t) + (f(t, .1', xes») dol'
o

- (x(t) - WT/(t) + ff(t, .1', xes) - WT/(s)) dol')

= wn(t) + (f(t, .1', xes») dol' - (f(t, .1', xes) - Wn(s)) dol'.
'0 .()
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Therefore, the functions W n are solutions of the equations

.t .t

(I/n) lV(t) == J j(t, s, xes) -- w(s)) ds - j f(t, s, xes)) ds T kn(t),
o 0

iI 1, 2'00' .

From (4) we obtain limn~(X) k n = 0, uniformly on [0, 1]. On the other
hand the solution of the equation

(Vo) wet) = CfU, s, xes) --- ll{S)) ds - ({(t, s, .x(s)) ds
., 0 .'1)

is W = °on [0, 1]. Thus, by Lemma 1, the sequence w" of the solutions of
(Vn ) converges uniformly to the solution]V ° of (Vo). Hence,
lim,,~O) Qn x, uniformly on [0, 1].

LEMMA 3. flx(t), t E [0,1] is a solution of (1) and minpEnl: Ii L(x) - L(P)il
does not exist, then there exists an unbounded sequence Qk,n E Ilk, n == ]. 2, ...
such that limn~(X) II L(x) - L(QIc,n)il = iLk .

Proof Since iLk = infPEnk II L(x) - L(P)jl, there exists Qk,n Ellk , n 1,2, ...
such that

lim II L(x) - L(Qk,n)" = iL" . (5)
Jl .. ~ 'i;

The sequence Qk " , n == 1, 2, ... is unbounded because, in contrary, we have, t
Q",,,, n = 1,2,... bounded and consequently fof(t, s, Qk,n(S)) ds, n =- 1,2,...
is equicontinuous. Also, by (5), the sequence L(Q",,,), n = 1,2"00 is
equicontinuous on [0, 1]. From these and since

we have that Qk,n , n = 1,2'00' is equicontinuous on [0, 1] and consequently
there exists a subsequence Qk,i.n such that limn~(X) Qk,i.n = P" E Ilk .

Thus, by (5),

which is a contradition.



APPROXIMATE SOLUTION 157

Proof of Theorem 1. If the first result of the Theorem does not hold,
then there exists an increasing sequence ,\n of integers such that

min LL(x) - L(PY:
PEnAn

does not exist. Thus, by Lemma 3, for every An there exist QAn E IIA" , which
satisfy the relations

il L(x) - L(QAn)il :s;; !LAn + OIAn)

II QAn il > An, II = 1,2,....

(6)

(7)

From (6) and Lemma 2 we obtain lim,,~ro QAn = x, uniformly on [0, 1],
which is a contradiction to (7).

Now, since there exist an integer no ~;;: °and P" E II" such that

L(x) - L(P,,)II = min 11 L(x) - L(P)I; = !L" ,
PEnn

by Lemma 2, we have

/I ~ /10 ,

lim Pn = .Y,
n-HD

uniformly on [0, I].

COROLLARY 1. Let the function f in 0) be such that

m

If(t, s, u) - f(t, s, v)1 :s;; A I 1 Uk - vk I,
k~l

(t, s, u, v) E [0, 1] X [0, 1] X IR

where A is a positive constant. Then there exist an integer n ~ no and P" E II"
such that

Ii L(x) - L(Pn)11 = min II L(x) - L(P)I:,
PEnn

and

lim Pn = x,
n~oo

Proof The function

uniformly on [0, 1].

get, fP) == tr f(t, t(l + e), fP(e)) de,
-1

t E [0, I], fP E C[-I, 0]
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is nonatomic at zero since

Ao G. PETSOULAS

I get, f) - get, f{'):

I t fl (./(t, t( 1
I

- e), fIe)) -/(t, t(1 + e), q:(e))) de I

.. 0 III

r I (~J(e))" - (<p( e))l' de
o __ s k- 1

'"
I' f 'P [ .I' I (! ~J(eW-l +- ~J(e)I-2! rp(e)

k 1

1/1

~J ~- 'p .I' I ((I rp -+- fLY-1 -+- ... -+- <p 1,',-1)
I:~l

for any (t, <p) E [0, 1] x C[ -1, 0] and f E S(t, <p, fL, s). Hence, this Corollary
follows from Theorem 1.

By the same idea as in the proof of Theorem 1 we can prove the following
theorem.

THEOREM 2. Let x(t), t E [0, 1] be a solution of the initial value problem

(ll) M(x) =: x' -+- F(t, x) =~ G(t)

x(O) C-~ a,

where F: [0, I] X IR --+ IR, G : [0, 1] -+ IR are continuous functions and

a E IR. Ifg(t, <p) c= t rF(t(1 -+- e), <p(e)) de, t E [0,1], 'P E C[~l, 0]
• -1

is nonatomic at zero, then there exist an integer no °and Pn E lln* (II" * is
the set of all polynomials of degree less than or equal to n with ll" *(0) a)
such that

(( M(x(t)) - M(Pn(t))I P dt)1iP

c:-c Ii M(x) - M(P,,)i!p = min dM(x) - M(P)[p, n no (p;;O: 1)
PEITI/*

and

lim Pn = .Y,
n--j:JC;

uniformly on [0, 1].



APPROXIMATE SOLUTION 159

COROLLARY 2. Let x(t), t E [0, 1] be a solution of the initial value problem
(n). If the jimction F satisfies the condition

m

F(t, u) ~ F(t, v)i :(c.; A I I Uk ~ Uk I,
k~l

(t, u, [.) E [0, 1] X IR >< IR,

where A is a positive constant, then the result of Theorem 2 holds.

Remark. From the above corollary it is obvious that the theorems in [1]
as well as the theorem in [2] are special cases of Theorem 2. Also, the
conditions on the constant A in [2] can be omitted.
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