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HufTstutler and Stein and recently Bacopoulos and Kartsatos have dealt with
the problem of best approximation by polynomials of the solutions of nonlinear
differential equations. The purpose of the present paper is to generalize their
results and to show that they can be established under a weaker set of conditions.

We consider the best approximation by polynomials of the solutions on
[0, 1] of the Volterra integral equation

L(x) = x(t) + J;)l fit, s, x(s)) ds == It) ()

as it is stated in [1] and [2]. The functions f, 1 are defined and continuous on
[0, 17 x [0, 1] = R, [0, 1]. respectively. Suppose that there exists a unique
solution x(/) of (1) defined on [0, 1]. On CJ0, 1] we consider the norm
gl == sup | (), ¢ < C[0, 1).
telo 1]
Let I7, be the set of all polynomials P, of degree less than or equal to #n which
satisfy the condition P,(0) = /(0), and put pu, = infpd,n " L(x) — L(P),
n==1,2,.... We examine il there exist polynomials P, <11, such that

>

pn — 1 L(x) — L(Py), and lim P, == x, uniformly on [0, 1].

now

The results obtained in this paper contain as special cases those of [1] and
[21. 1t 1s also to be noted that some of the conditions in [2] are not necessary.

|. PRELIMINARILS

Let 7 C R be an interval with left endpoint zero. If x is a real continuous
function defined on 7, then the operator Q : 7 < x > C[-—1, 0] is defined by

(0:)0) = x(t(1 -+ 0)), 8e[—1,0], tel
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Letg: I x C[—1,0] > Rand f: I x C[—1, 0] — R be continuous functions.
A hereditary differential equation is a relation of the form

L () 0ix) = fit, 0w,
where
D(t) ¢ = ¢(0) — (1, @), 11, o C[—1,0].
Suppose U € I x C[—1, 0] is open and
S(t, @, o s) = e Cl—1,01: (LY e Ul § — o] <pu,
P(0) = @(0), 0 [—1, —s]i,

(z, p) € U. We say that a continuous function g : U — R is nonatomic at zero
if for every (1, @) € U there exist 5, = so(t, @) > 0, y,, == (1, @) continuous
and p(t, ¢, n, §) nondecreasing in p, s and continuous such that

plt, oo, s) < |1 and [ g(r, ) —g(t, @)l <plt, o, S p — @

for every (1, §) € U, e S(t, @, i, 5), 5 €0, 5], p € [0, ).

2. MAIN RESULTS

THEOREM 1.  We consider a solution x(I) of the Eq. (1) on [0, 1]. If the
Jfunction

0
ot q) =t f 11+ 8), a(6) df, 1e[0,1], ¢eC[—1,0]
-1
is nonatomic at zero, then there exist an integer ny, > 0 and P, € I, such that
1 L(x) — L(P)ll = ;Ennf | Lx) — L(P),, n=n,

and him,_,, P, = x, uniformly on [0, 1].

The proof of this Theorem requires the following lemmas.

LEMMA 1. We consider the integral equations

(V) W) = [ flty s, X)) ds + (), n=1,2,..,

where f,, 1 [0,1] X [0,1] Xx R—R, A, : [0, 1] > R are continuous functions
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such that lim,, ., fr, = fo, limy, o, f1, == hy, uniformly on [0, 11 < [0, 1] = R,
[0, 1], respectively. If

-}
gty @) = 1| fults t(L - 0), @(0)) db i hg),
Y1
tef0,1], ¢eC]—1,0. n-= 0,1...

and g, is nonatomic at zero, then there exist an integer ny .= 0 and solutions
xpof (V) on {0, 11, n Z= ng such that lim,,, , x, - x, , uniformly on [0, 1].

Proof. From what it is stated in [4, p. 67], the nonatomic property at
zero of g, implies uniqueness of the solutions of (V) and the hereditary
equations

{
(#,) £00) — et 0) = 0
x(0) == 11,(0), n==0,1,..

are equivalent to the integral equations

V) x(t) = Wf,,.(t, s, x(s) ds = h(r), n=01...

M}
Thus, the existence of solutions x,, of (V) with lim x,, == x,, uniformly on
[0, 1] follows from the existence of solutions x,, of (H,,) with lim,_. x, - x, .
uniformly on [0, 1].
On the other hand, by Theorem 6.2 in [4], there exists a sequence x,, of
solutions of (H,) which converges uniformly on [0, 1] if

() lim,., &g, =gy, uniformly on closed and bounded subsets of
[0,1] x C[—1,0];
(i) gn,n =0, 1,... are compact;
(iii) g, Is nonatomic at zero; and

(iv) g, is uniformly continuous on closed and bounded subsets of
[0,1] x C[—1,0].

It is clear that all these conditions are satisfied and this completes the proof
of the lemma.

LEMMA 2. Let x be a solution of the Eq. (1) on [0, 1]. If the function

g ) 0] S+ 0, g0 b 1[0 1], e Cl-1,0]
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is nonatomic at zero and there exist Q, € I1,, such that

| L(x) = L@ < pon + €0, 1 =12,

where
€, =0, lim ¢, = 0,
then Q,, converges uniformly to the solution x on [0, 1].
Proof. We prove first that lim,,_., L(Q,) = L(x), uniformly on [0, 1]. In

fact, according to Weierstrass theorem there exist polynomials S, /], .
n = 1, 2,... such that

llrg S, = X, uniformly on [0, 1]. )

On the other hand we have

E‘ L(.\‘) - L(Qn)!
f‘:: M “T"' €n \/\: ‘: L(X) 7 L(Sn)H + €n

- ” '\‘(t) "%— [‘t‘f(ra s, -\‘(Sk)) ds — Sn(t) - “L.f(ts s, Sn(s)) ds ;} _l_ €
‘ Yo Y0 "

xSyl [ s ds = [ s Sy ds F e @)
Thus, by (2) and (3), we obtain
lim || L(x) — L(Q,)| = 0. )
We show next that lim,,, Q,, = x, uniformly on [0, 1]. If we put
wy(t) = x(1) — Qu(t) and k(1) = L{x(t)) — L(Q,(1)), tc[0, 1], n=1,2,..;
then
o(0) = LG(0) — LQA0) = L(x(1)) — L(x(1) — 1y(1))
=20 + [ s, 2 ds

— (x(r) — w(1) -+ ftf(t, s, x(s) — w,(s)) a's)

= w,(t) + ftf(t, s, x(s)) ds — ftf(t, s, x(s) — w,(s)) ds.
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Therefore, the functions w,, are solutions of the equations

(V) wit) = Jd[: i, s, x(s) — w(s)) ds — Jitf(t., $, xX(8)) ds -1+ ko(1),
it= b, 2,

From (4) we obtain lim,_, k, =0, uniformly on [0, 1]. On the other
hand the solution of the equation

Vo) w(t) = ft f(t, s, x(s) — w(s)) ds — ’[V.zf(f, s, X(8)) ds

is w =0 on [0, 1]. Thus, by Lemma 1, the sequence w,, of the solutions of
(V) converges uniformly to the solution w == 0 of (V,). Hence,
lim, . Q, == x, uniformly on [0, 1].

LEMMA 3. If x(z), t € [0, 1] is a solution of (1) and minp.s i L(x) — L(P)j|
does not exist, then there exists an unbounded sequence Q. , €1l ,n =12,
such that lim,, . || L(x) — L(Q,. ) = ws. .

Proof. Sincepy, = infpenk | L(x)— L(P)||, there exists Q. , €11, n =1, 2,...
such that

llm H L(X) - L(Ql;,n)ii = M. (5)

The sequence Q... , # == 1, 2,... is unbounded because, in contrary, we have
Qum,n =1,2,. bounded and consequently jf)f(t, 8, Qun(8)) ds,n==1,2,..

is equicontinuous. Also, by (5), the sequence L(Qp.),n =12,.. is
equicontinuous on [0, 1]. From these and since

LQs) = Q)+ [ St 5, Qunle)) s

we have that Qy.,, n == 1, 2,... is equicontinuous on [0, 1] and consequently
there exists a subsequence Q; ,, such that lim, ., Q. = Pre1l; .
Thus, by (5),
e = limp o | LX) — LDl = 1§ L(x) — LIPRI

which is a contradition.
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Proof of Theorem 1. 1f the first result of the Theorem does not hold,
then there exists an increasing sequence An of integers such that

min | L(x) — L(P)!

Pelljy

does not exist. Thus, by Lemma 3, for every An there exist Q,, € I1,, , which
satisfy the relations

| L(x) — L(Qhn)ll < pan -+ (1/A) (6)
I Qanil = An, n=1,2,... (7

From (6) and Lemma 2 we obtain lim,,, Q0,, = x, uniformly on [0, 1],
which is a contradiction to (7).
Now, since there exist an integer n, .= 0 and P, €11, such that

I L(x) — L(Py)l = min | L(x) — L(P) = pn, 11 221y,
Pell

n

by Lemma 2, we have

Iim P, = x, uniformly on [0, 1].

n-om

COROLLARY 1. Let the function f in (1) be such that

If(t3 S, ll) *f(ta S, U)I gA % [uk - Uk[a

k=1

(t.s,u,v)[0,1] X [0,1] x R

where A is a positive constant. Then there exist an integer n = nyand P, €11,
such that

i L(x) — L(P,)| = min || L(x) — L(P)], n =n,
Pell,
and

lim P, = x, uniformly on [0, 1}.

n->w

Proof. The function

oty @) =t fi fit, 11 + 0), o(8) db,  1e[0,1], peC[—1,0]



158 A. G. PETSOULAS

IS nonatomic at zero since

| gL, f) — glt, @)

:erﬁﬂnnl+9L¢w»*fwn1+ex¢wmdﬂ

O H

2 GO — (0| db

X g

< [

He

CL g ls X O O @B | p(B))

i

il = @ls Y (@l + e Ll
fe=1

for any (¢, ) € [0, 1] » C[—1, 0] and +/ € S(1, @, , 5). Hence, this Corollary
follows from Theorem I.

By the same idea as in the proof of Theorem 1 we can prove the following
theorem.

THEOREM 2. Let x(t), t € [0, 1] be a solution of the initial value problem

(ID) M(x) = x" 4 F(t, x) == G(t)
x(0) = aq,

where F:[0,1] x R—-R, G:[0, 11— R are continuous functions and
0
acR gl g) =1 [ Ful = 6), ¢(®) do, 1€[0,1], geC[—1,0]
Y

is nonatomic at zero, then there exist an integer n, > 0 and P, € Il * (I1* is
the set of all polynomials of degree less than or equal to n with I1,%(0) == q)
such that

([ mon — mepaconr )

= M(x) = M(P,)jp = min | M(x) — M(P)p, nzzny, (p=1)

Pell *
and

lim P, = x, uniformly on [0, 1].

-G
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CoRroLLARY 2. Let x(1), t € [0, 1] be a solution of the initial value problem
(I1). If the function F satisfies the condition

CF(r,u) — F( o) < A [ uf — oF | (t,u,v)e[0,1] x R x R,

=1
where A is a positive constant, then the result of Theorem 2 holds.

Remark. From the above corollary it is obvious that the theorems in [1]
as well as the theorem in [2] are special cases of Theorem 2. Also, the
conditions on the constant 4 in [2] can be omitted.
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